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Abstract

Within the framework of dissipative systems with time-independent behavior, the study of the evolution of dela-
minated structures modeled by frames of plates is considered via a global energetic analysis. Assuming the current
equilibrium state is known, the governing rate problem for the instantaneous delamination is formulated as either a
system of local equations or as a global variational inequality.

This global formulation enables to study stability and non-bifurcation of the evolution of a delaminated structure
under quasi-static loading, corresponding to the statement of existence and uniqueness criteria for the rate solution.

Two analytical applications to simple structures are presented.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of fracture in composite structures has been widely investigated. The main issues are the
nucleation of the damage and its evolution (Moon et al., 2002; La Saponara et al., 2002; Bruno and Greco,
2001; Zou et al., 2002). In the latter category, numerous papers deal with the modeling of delaminated
structures where various viewpoints are considered. The delamination can be represented as an imperfect
interface whose total damage represents the delamination (Perret et al., 1998; Borg et al., 2002; Greco et al.,
2002; Qiu et al., 2001). This assumption is especially efficient to define the start of fracture. Another line of
investigation considers the delamination as the propagation of a crack parallel to a plate or a shell which
corresponds to the delaminated structure (Storakers and Anderson, 1988; Larson, 1991; Cochelin and
Potier-Ferry, 1991; Pradeilles-Duval, 2001; Ousset, 1999). Analytical or numerical examples of propagation
of delamination in such composite structures use various propagation criteria mainly based on energy
criteria. Extended Griffith formulations, sometimes with decomposition into fracture modes, have been
used as well (Hutchinson et al., 2000; Nilsson et al., 2001).

E-mail address: rachel@lms.polytechnique.fr (R.-M. Pradeilles Duval).

0020-7683/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/].ijs0lstr.2003.07.006



104 R.-M. Pradeilles Duval | International Journal of Solids and Structures 41 (2004) 103—130

This paper is devoted to the evolution of delaminated structures represented by a frame of plates. The
goal is the introduction of a global formulation for the rate problem, when the propagation is governed by a
Griffith criterion. This new formulation enables to analyze the existence and the uniqueness of the solution
of this problem. In other words, the present global formulation allows the study of the stability and the
bifurcation in the propagation of the delamination in the modeled delaminated plates, which, to our
knowledge, has not been reported in the literature. The approach followed here is an extension of previous
work on irreversible phase transformation in three-dimensional bodies (Pradeilles-Duval and Stolz, 1995).

In Section 2, given the kinematic theory chosen in each plate, the kinematic junctions between the plates
along the delamination front is defined. Using a classical thermodynamic framework for time-independent
behavior of structures (Nguyen, 1993), we derive the equations for the equilibrium problem without
propagation (i.e. the delamination front given). Then the value of the total dissipation when the front
propagates is obtained. This gives rise to the energy release rate associated to the propagation of the
delamination front.

In Section 3, in order to define the quasi-static evolution of the system, one has to set the rate
boundary value problem. Having chosen an extended Griffith’s law as criterion of delamination and a
normality rule as evolution law, the solution, in term of velocity and propagation of the front, is to be
governed by either a system of local equations or a global formulation in the form of a variational in-
equality, based on a potential on the rate mechanical quantities. For a given delamination propagation,
the rate boundary value problem corresponds to a non-classical elastic boundary value problem with
internal pre-stresses.

In Section 4, it is shown that the evolution of the system (i.e. propagation of front), assuming a classical
criterion for the evolution of the front, is governed by a variational inequality. This formulation gives some
conclusions on stability and bifurcation of the current state, without the need to actually determine the new
geometry obtained by propagation.

Extensions of the above formulation given for Kirchhoff-Love plates are obtained for plates usually
attributed to von Karman (i.e. when large transverse displacements and large deformations are considered)
in Section 5.

Finally, analytical applications of these formulations to simple structures are proposed in Section 6.

A numerical procedure based on finite element method is outlined in Appendix A.

2. Problem settings
2.1. Geometry

Using classical modeling of delaminated structures (Cochelin, 1988; Larson, 1991; Storakers, 1991), the
system, denoted by €, is considered as three assembled plates, one of which represents the undamaged part
(Q?) and the two other plates correspond to the plates above (Q,]) and below (Qf) the delamination (see Fig.
1). Consequently, 2, = Q° U Q! U Q’. The front of delamination along which the three plates are linked, is
denoted by I',. The external boundary of @, is 0Q.

The subscript ¢ emphasizes the fact that the geometry is time-dependent during the evolution of the
structure, the sub-domains Q°, Q! and Q7 as well as the delamination front I', are expected to change due to
the propagation of the delamination. On the other hand, the external boundary 0Q2 is assumed to be un-
changed.

The plates are parallel to the Cartesian orthonormal frame (e, e,). Letting e; = ¢, A ¢, denote the
transverse direction, normal to the initial (undeformed) configuration of the plates, the following notation
are introduced:
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Fig. 1. Delamination modeled by plates frame: (a) top view, (b) transverse view.

e /', the vertical position of the plate i compared with the mean plane of the undamaged plate (Q?),

¢ 1, the unit normal vector to 0€2, external to @, and ¢ = e; A n the tangent vector to 0%,

¢ vand 7, the unit normal and tangent vectors to I';,, with v A T = e; and v external to the undamaged part
Q.

In addition, a summation convention is used, with a summation range of either 0-2 (Latin superscripts)
or 1-2 (Greek subscripts). Latin superscripts refer to the plate Q°, Q!, Q7, supporting the corresponding
quantity.

2 2
S xwfi=xfi=xifi+xf, and > fig'=fig'=1¢"+f'g" + ¢
a=1 i=0

Moreover, the plates Q°, Q' and Q” are parallel but not in the same plane. In the following, they are
considered through their projection on the mean plane of Q’. So, a point is defined by its horizontal
position (x1,x;) and by the plane it bellows which indicates its vertical position (x; = 4’). One should note
that, as shown in Fig. 1, a position (x;,x;) corresponds to two points, one in Q! and another in Q.

Consequently, I'; corresponds to the curve in the mean plane of Q?

In the following, V defines the gradient of f, in the plane (e, e,). Two different kinds of jumps across I',
are defined: [ /] = f° — f' — f?and [ f] = f° — f'. The gradient of quantity £ in the direction f is denoted
by f=Vf ez If s denotes the curvilinear coordinate along I';, associated to z, then, for instance,

fw :Vf'Xandfs = vfl
2.2. Kinematic description
The motion in the plate i is classically defined by

e the in-plane displacement, u'(x;,x2) = v (x1,X2)e,,

o the transverse displacement of the mean plane, w'(x;,x>)e;,

e the rotation of a small segment initially normal to the plate, in other words, the flexural rotation,
0'(x1,x2) = 0, (x1,x2)e,.

So, the displacement ﬁi of the particle whose initial coordinates are (xj,x,,x3) is:

Ci(xlaxz,&) = gi(xl,xz) + wi(xl,xz)g3 —x3Qi(x1,x2).
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The global strain tensor associated to this motion within the framework of small perturbations is given by:
g(E) =¢@)+ %[23 @y (W, 0) + 9y (W, 0) ® e5] — x3x'(0),

with
&(u) = %(Vu +'Vu), x(0)= %(VQ +7TV0), y(w,0) =Vw-—0. (1)

&, k and y are respectively the plane strain of the mean plane, the gradient of the rotation of the normal and
the distortion of the plate.

Along the delamination front, the motions of the three plates are linked. One can choose among several
sets of conditions to formulate this link and this choice can strongly influence the predicted behavior of the
whole structure (Anquez et al., 1990; Pradeilles-Duval, 1992; Roudolff and Ousset, 2002). In this paper, the
continuity of plane displacement, of transverse displacement and of rotation along I', are enforced through
the following conditions:

[u] —H6° =u® — 16" —u' =0
[[W]l_: WO—WI::() VZG{I,Z} (2)
[0] =6"—6"=0
These conditions imply the following relations concerning the tangential derivative of the displacement:
[Vu] -z— HVE -1=0
[Vw]'-z=0 vi e {1,2}.
[VO]' -z=0

2.3. Constitutive relations

Each plate is assumed to be elastic and the elastic energy is denoted by W, which is a function of &(u),
x(0), y(w,0).

So, in the following, the generalized stresses are the in-plane stress tensor, NV, the bending stress tensor,
M, and the shear force, 7. They are obtained in each plate through the constitutive relations:

ow ow ow
N=% M=% I=% 3)

2.4. Equilibrium

The system of plates is loaded by prescribed displacements and forces. Classically, the latter are rep-
resented by vector densities over the external boundary, assuming that no surface force is applied. Then, if
the motion of the structure is defined by the generalized velocities (u*, w*, 0), the virtual power of external
forces is reduced to:

Pe(u’,w,07) :/ £ (u" +w'e;) + C-07]ds.
0Q

In the previous equation, F denotes the external distributed force and C the external distributed moment on
0Q.

Similarly, according to the previous definition of constitutive relations, the virtual power of internal
forces is:
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Pl 0) = —/ IV o) + M < k(07) + T - 5(w",0")] do.
Q N
By virtue of the virtual power principle, a state of equilibrium is governed by 2;(u*,w*,0")+
P (u,w*,0%) =0, for all fields (u*,w*,0") which satisfy the continuity relations (2). This leads to the
classical local equilibrium equations:

divN =0 _
divM+T=0 in Q, withie{0,1,2}, 4)
divi =0

and the relations between generalized stresses and distributed forces on the boundary 0Q2 are
N-n=Fspey, T-n=F, M-n=C.
Moreover, the continuity relations (2) along I', induce static junctions:

[N]-v=0, [T]-v=0, [M]-v+hN-v=0.

2.5. Equations for Kirchhoff-Love plates

The main results of this article are established for Kirchhoff-Love plates (Timoshenko and Woinwsky-
Krieger, 1959). Their extension to von Karman plates (Timoshenko and Woinwsky-Krieger, 1959, Chapter
13; Love, 1944) is then addressed in Section 5.

In the framework of Kirchhoff-Love plates, one has Vw = 0, which corresponds to y(w,0) =0 and
k = VVw. The equilibrium equations (4) reduce to: -

divN =0

divdiszo} in Q, with i€ {0,1,2}. 5

Thanks to relations between w and 6 along 0Q and I';, the boundary conditions on 02 become:
N - n = Fpey,

—diVM'E—%(E'M'E) =F3—aac;,
n-M-n=C,
and the continuity conditions on I'; become:
[N]-v=0,
[divM] v+ & v {[M] + KN} 2] =0, ™)
v-[M]-v+hy-N-v=0.
Define the following notations on any line in €, (v is a normal vector to this line):

o M =M .v— KN -y, the moment on the line,

o O=T"-v—2(M -1), the transverse force on the line.

Then, the boundary conditions on 02 and the continuity relations on I'; are rewritten as:

e on 02,
oC;
Os ’

N
N

I
B
c

N-n=1Fge;, Q=F—
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e onl,

[N]-v=0, [0]=0, [M]-v=0. 9)

2.6. Prescribed loading and displacement

The virtual work associated to given external forces (resp. prescribed displacements) is denoted by
APext(u, w) (resp. APyin(N, M)) and is written as

3
P (U, w) = Z /m Fley - (u+ wey)]ds +/ C(n-Vw)ds (10)

3Qc

and

2

. 0 ~
Qkin(N,M):Z/ u%[g/y(l\ﬁﬂ)]dsf/ {leM~ﬂ+a'(ﬂ~M~£):|deS+/ (n-M)0"ds,

p=1 a!),,li 0Q,, 0Q)
(11)
where 0Q, denotes the part of the total external boundary 0Q2 where the quantity f is prescribed.

In the previous formula, 1 represents the loading parameter (i.e. the prescribed data on the boundary
at time ¢ are A(t)F{(x;,x;) on 0Qp, A(t)C!(x1,x;) on 0Qc, A(t)ufj(x),x;) on 3R, A(t)w(x;,x;) on
0Q,,, A(1)0%(x1,x,) on 0Q,). The evolution of the structure is studied when this parameter increases.

Prescribed loading and generalized displacements are given so that the problem is “well-posed’’:

* 0Q=0Q,, U0Qg and 0Q,, N 0Ly, = (0 VB € {1,2} (complementarity of the prescribed in-plane displace-
ment and the associated in-plane force),

e 0Q=0Q, U0Q and 0Q, N0Qy = () (complementarity of the transverse displacement and the shear
force),

e 0Q =0Q,U0Qc and 02y N 0Q¢ = () (complementarity of the flexural rotation and the normal bending
moment).

2.7. Equilibrium equations

The total potential energy of the system is
EPu,w, T, A) = | W(u,w)do — 2P (u, w).
Q

Using standard Lagrangian method, with the kinematic constraints defined by (2), the following system
governs equilibrium for a given front I';:

e boundary conditions with prescribed displacement:
Vﬂ € {1,2}, Up = iu; on 691,/;,
w=/w’ on 0Q,, (12)
Vw-n=70° ondQ,

compatibility relations (1) on the plates,
compatibility relations (2) along the delamination front I', through kinematic junction,
constitutive law (3) on each plate,
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e classical local equilibrium equations (5) on generalized stresses,
e cquilibrium equations (7) or (9) due to the junction along I,
e boundary conditions with given external loading:

vp e {1,2}, gﬁ~N~Q:/lF[‘f on 0Qg,
Q= JF on 0Qp, (13)
M -n=2C" on dQc.

The displacement, solution of this boundary value problem, (u(4, I',),w(A,I',)) is also characterized as the
kinematically admissible minimizer of the potential energy. The equilibrium value of EP°' will play an
important role in the analysis to follow and will be denoted by P, i.e. P(4,T,) = E**(u(A, I,), w(4,I,), ).

2.8. Propagation of the delamination: associated derivative

When the loading parameter increases, the delamination is expected to propagate. Let —¢v denote
the normal velocity of the front I', in the mean plane of plate Q?, with ¢(s) = 0, Vs € I',. So that, if x on I,
then x — ¢vdt is on I, y,.

For any quantity f defined along I',, the time derivative D, (f) associated to the propagation is defined
as:

Dy(f)(x) = lim L& 9207 +d0) = /(x,1)

dt—0 dr (14)

)

where x is a point on I',. In particular, one finds that:

0 _ 0
Dyv = e ¢,z and Dyt = 2 L= ¢ 0.

For a function f defined over Q,, one gets for the value of f on I,
Dy(f)=F VS,

where £ is the partial time derivative of f, i.e. i—’; Besides, the time derivative of a generic integral over €,
is given by:

4
dr Jg,

fdo = /Q[fdw— /F /16 ds.

During any quasi-static evolution of I'; with velocity ¢, the relations (2) must be hold at any time. So,
Hadamard jump relations on displacement are verified:

Dy([u] = VW) =[] — KW — ¢{[Vul' = KVVw'} -1 =0
Dy([w]) =[w] =0 p Vie{l,2}. (15)

Dy([Vw]) = [Vl — J[VTn] -1 =0
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Likewise, enforcement of the static continuity relations (7) at any time implies:
. 0
N]-v=——(¢[N]-
[N v = -~ (¢[N] 2)
0

[divM] ~y+%{y~ ([M] + K N') .;} =- (g%{qS([[M]} +h'N)} -z), (16)

0¢

v ([M]+ 1N v = ¢lu {V([M]+ KN v} o] = ([M]+ KN s (t@v+v@ D)5,

or
[N]-v=~ (f/)[[Nﬂ 1),

&
101 = - & (2 (90MT+ N -2

‘-1
N———

3] v = gl (V(IM] + KN -3} o] ~ 2 (8] 7).

2.9. Total dissipation

When the loading parameter / increases or the delamination front I'; propagates, the evolution along the
equilibrium path of the potential energy at equilibrium P is given by:

i_f - %[EPOt(E(Fta /“)7 W(Fta /“)7 Fn /‘{)] = % |: W(Z(Fh )‘)7 W(Ft7 )“)) dow — ;jext( (Ft’ i)’ W(F” i))
Q

d d d :
pot pot pot pot
=EY dterEw @ w+ET, —th (T EA

Thanks to the behavior relation (3), to the continuity equation on I', (7) and to virtual power principle,

N :Vou+ M : VVowda

Q

:/ {5g~ (N-n)— |:diVM~Q+§(Q-M-[):|5W+(Q'M~Q)(V§W'ﬂ)}ds
oQ &)
- / {v-N"-([ou] = HoVn’) +v-M"-[Vow] — (divM' - v)[ow]'} ds (17)
ry
thus, using the Hadamard jump relations (15), ones obtains:

Ef’;‘%g(l" 2) —|—E‘ift%w(l“,, / N :Vu+ M :VVwda — APy (i, W)

= \Piin(N, M)
+/{X~N"-([[vg}]'éhfvvw‘))ﬂ.Mf.[[vw]}’}-mds. (18)

The total time derivative of the potential energy at equilibrium is thus found to be given by:

% = 1Pin(N, M) — i P (u, w) — / [W]pds + / {v-N - ([Vu] = KVIW) +v-M - [VVw]'} - vods.

(19)
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The total dissipated power of the system & is given by the difference between the power of external forces
and the rate of total free energy of the system, i.e. by:

P . .
9 = [E~(Q—%Wg;)—i—CVvin]ds—i W(u,w)dow = —d——i@ext(%w)—f—iﬂkin(N,M)
00 ; dr Jg, dt
dr,
=_pPr —. 2
Ty (20)
The total dissipated power is thus found, by virtue of (19), to be of the form:
g = / G(s)p(s)ds, (21)
I
where the energy release rate G(s) is given by:
G=[W]—v-N;-([Vu] = h;VVwW) -v—v-M,-[VVw] - ». (22)

3. Quasi-static evolution

In this section, the quasi-static evolution is presented. It includes the definition of the criterion which
governs the propagation of the delamination, then the local equations as well as the global formulation of
the rate boundary value problem are presented.

3.1. Propagation criterion

Taking into account the form of the dissipation, the governing law for the evolution of I, is introduced
according to the framework of the generalized standard materials (Nguyen, 1987, 1993).

Accordingly, the existence of a convex threshold function g(G) is postulated, so that the propagation of
the delamination front is subject to the following law:

o if g(G(s)) <0, then ¢(s) =0, i.e. no propagation at point s,
e if g(G(s)) =0, then ¢(s) = 0, i.e. the propagation of I', at point s is possible,

which is equivalent to

d(s) = c(s)g—f; with ¢(s)g(G(s)) = 0 (consistency relation)and c¢(s) > 0. (23)

A generalized Griffith criterion can be considered by introducing a threshold energy to be reached for
propagation of the delamination front to occur. In this case, one would have g(G) = G — Ge.

In the following, I'""" is the subset of the front I', where the criterion is reached and the propagation
is possible.

' = {s € I', such that g(G(s)) = 0}.
3.2. Consistency condition and evolution law

When the front is moving, Eq. (23) implies that, during the actual propagation of I'}"*, g(G(s)) = 0 must
be maintained, leading to the consistency equation:
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if c>0o0n I, Dy(g(G)) = %D‘/)(G) =0.
In the present formulation,
Dy(G) = G(N. M) + G(is, ) + ¢G", (24)

where
G(N.M)=—(v-N,) - ([Vu]' = hco) - v — (v M) - ([x] - v),
G(it, ) = ~[N]- - Vity + ([M] + hiNy) - - (io),
G'=—[M---VVu+M---VVVw]-y+ (v- VN;-v) - ([Vu]' = hixo) - v
+ (VM) - [x] v+ N [([VV] = hiVi) 3] 2+ M- (V] ) -z

Finally, the evolution law of the delamination front is:

ceV/Nd eV, DyG)(c— 0)2—2 <0 (25)
with
V ={c(s) withc>0on I'"" and ¢ =0 on I',\ I'""'}. (26)

3.3. Local equations of the rate problem

The evolution law for I'; being chosen, the instantaneous evolution of the global system induced by a
loading evolution with velocity given by A is now investigated. This evolution turns out to be governed by
the following rate problem for the rates of fields variables (i, w):

e boundary conditions with prescribed displacements:
VBe{1,2}, ig=iuf on?dQ,,
w=Jw! ondQ,, (27)
Vw-n= 0" on dQy,,
e compatibility:
o in each plate Q;:

) 1 . ) i )
i = (Vi + Vi), K=V, (28)

o on I, verification of the Hadamard relations (15),
e constitutive relations:

= _ _ | =w"| | inQ, withie{0,1,2}, (29)
Mz R2wi azuz/z kl iCl t
Ok O¢ oK

e local equilibrium equations for the generalized stresses:

divN =0

divdivAf — 0 } in Q, withie{0,1,2}, (30)
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e boundary conditions with prescribed forces:
VBe{1,2}, ¢ ‘N -n= AF,? on 0Qz,
Q:—divMﬂ—%(g-M-;):iFf on 0Qp, (31)
Con=n-M-n=iC" on 0Qc,

e cquilibrium conditions in rate form (16) along the moving delamination front I',,
e cvolution law of I', given by (25).

The rate boundary value problem (15), (16) and (27)—(31) on & and w is similar to the original equilibrium
system (1)—(3), (5), (7), (12) and (13), but, here the right-hand sides of equations depend on a prescribed
evolution of the delamination front. The rate boundary value problem with a prescribed evolution of I, (i.e.
¢ or ¢ given) is similar to a problem of elasticity with non-classical conditions (15) and (16) localized on I',.

3.4. Global formulation of the rate value boundary problem

In order to have a formulation better suited to the study of stability and bifurcation, a global functional
is defined:

L 2 | R ; o ~.. .. Og 1 . 2 08
F(g,w,c,l):;/fi[s,k]W [k}dw—/lg’m(g,w)—/r’ G(g,w)c%ds 2/FG <6G> ds,

(32)
where & and x are defined by (28).

Theorem 1. (&1, w, ¢) is the solution of the system of local equations (15), (16), (25), (27), (30), (31) with the
compatibility relations (28) and the constitutive equations (29) if and only if

oF .. OF . oF

(271}‘)?0)61{ au( g)ﬁ*%(ﬁ/—W) ac(c_c)>07 V(Qawaé)eKa (33)

where K is the convex set of admissible fields with given boundary conditions and evolution criterion on del-
amination front and is defined by:

i, w, Vws’(Q), 6" () ic{1,2}
iy = Juu on 8Q,,, p€{1,2}
W= in? on 08,
Vw - n = A0° on 09y,
K= @w,o)l| [a] — VW = cZ([Vu]' — KVVW°) v i€ {1,2}
[w) =0 on T,
[Vw]' _caG[[Kﬂ ie{l,2}
c=0 on '™
c=0 on I',\ I'l"*™

Proof. In the following, ¢ = &(#) = ¢(u — ), k = VVw = VV(W — w) ¢ = ¢x=(¢c-0)X
Because (i, w,c) € K, one gets relations (15) and (27), if ¢ = c—
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Consider the inequality
OF . OF OF

@ﬂ‘i‘aww-i-a 0

with (&, w,c) € K and for any (&, W, ¢), admissible with vanishing displacement on the external boundary
(where displacement are prescribed) then, by virtue of the notations due to the compatibility relations (28)
and the constitutive equations (29),

ogi/iw;HM:k]da—mmaw /{Vuo [N]+ & : ([M]+mN;)}ds

_/F G(Q,W)q%ds—/r G ¢ ds.

Using the divergence theorem and the properties of admissible fields (i, w) on the external boundary,

2
0< Z /v[—divN—i- div divMe;] - (it + We;) da +/ leg N -n— /iF/;’]i;ﬁds

i=0 aQF/;

) on-M- .
+/ l—diVM-g—ﬁil—lFf
aQF3 aS

- /{2- [N -] +v-[M- VW] —v- [div MW+ Vit : [N] + & : ([M]+ hNi)o} ds.

st+/ [n-M-n— iC%(n- Viv)ds
Q¢

At this step, this inequality must be satisfied for any admissible field (i, w, ¢). Consequently, the first four
terms, in the previous inequality imply that the rate solution must satisfy Egs. (30) and (31). The inequality
is thus reduced to:

0< _/F {v-[NT iy v [¥1] - iy — v [dliv Mg } ds

A

- / Lo N[l + v M- [V + Gl ) + G g ds.

15

Vit - [N] - 2¢p + #o : ([M] + h,~N,-)¢>} ds

Finally, using the compatibility of the velocities (i, w) with the front velocity qb =c gé on I'; (because

(i, w, ¢) and (W, ) are elements of K), one obtains
o< - [{o v+ S0V 0} e
+/F{z~[[Mﬂ-x+hix-Ni~z—¢z-([[VM]Hh,.VN,.)-X}[WO.X]ds
(IMY + V) : (29 +v0 )] [Tin 115

{5
_ /F ([[divM]} .y+%{y- (IM] - hy - N;) .1} +%{1 .§[¢([[M]] + IiN;)] ~1}>w0ds
D

This inequality must hold for any admissible (&, w, ¢), which implies that local equilibrium equations in rate
form on I', (16) are fulfilled as well the evolution law (25).
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To summarize, the variational inequality (33) has been shown to imply the rate boundary problem ((15),
(16), (25), (27), (30) and (31)) assuming the compatibility relations (28) and the constitutive equations (29).
The converse implication is straightforward and Theorem 1 follows. [

Rewriting of the rate problem: The set K of admissible fields with the kinematic boundary conditions, the
Hadamard jump relations (15) and the evolution law of I'; is convex.
In the following paragraphs, for given A, ¢ (i.e. for given ¢), if (i, w) is solution to Egs. (15), (16), (27),

(30), (31), with (28) and (29) then, let

Hie, 1) = F(i(c, 1), w(c, 1), ¢, 4)
denote the value of F for the solution of the rate problem, when the front velocity and the loading evolution
are prescribed via ¢ and A. The evolution of the delamination front is governed by

OoH . . . . o
e [c,A](¢ —¢c) =0, V ¢ admissible with evolution law (23) and criterion (25).
In the sequel, we denote by H the second-order derivative of functional / with respect to c. Because the
functional H is a quadratic function of (¢, 4),

=T O

o a2 bedi
and the evolution inequality can be written as:
find ¢ € V' admissible with (23) and (25) such as

~ OH . .
(c— c){Hc + 5 61/1} >0, Ve admissible with (23) and (25). (34)
c

The functional H is defined on the current configuration. It is a function of the displacement and of the
position of delamination front at time ¢. So, the instantaneous evolution of the structure from its configu-
ration at time ¢ depends solely on the current geometry and the state of equilibrium at time z.

4. Characterization of the current state

In this section, we investigate whether there exists one or more admissible solutions to the quasi-static
instantaneous evolution, when the loading parameter increases. To achieve this goal, general results from
Duvaut and Lions (1976) and the same framework as in Nguyen (1993) are used.

In what follows, “stability” refers to the existence of a solution to the rate problem and ‘“‘non-bifur-
cation” to the uniqueness of the solution of the same problem. More precisely, “non-bifurcation” means
that the solution to the system of local equations (15), (16) and (25)—(31) is unique. This definition of non-
bifurcation thus does not consider bifurcations of higher order in time.

4.1. Stability of the evolution

Theorem 2. The evolution of the delaminated structure from a state, characterized by a displacement (u, w) and
a delamination front I';, is stable (has at least one solution) if and only if

cHe>0, YeeV—{0},
where V is the set of admissible fields with evolution laws, defined by (26).

Proof. The evolution of the system is associated to the solution ¢ € V' of Eq. (34). Taking into account
different admissible fields ¢/, it leads to:
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- O2H .
ceV and Hc+ -4 =0. (35)
dc 0ol

Then, to solve (35) for a prescribed load increase A, one has to invert H. If H is positive definite on ¥, then
(35) can be solved for any given 4. Obviously, if one is able to find ¢ associated to any 4 by Eq. (35), then the
function ¢ — He is surjective on V.

Moreover, let the dead load be defined as the first value of the loading parameter that enables delam-
ination propagation without a loading parameter evolution i.e. such that there exists ¢ € ¥ — {0} such as
Hc = 0. Consequently, the dead load indicates the possibility of an unstable evolution where a delamin-
ation propagation may occur without a load increase. [

4.2. Non-bifurcation of evolution

Theorem 3. There is no bifurcation (at most one solution) in the evolution of the delaminated structure if and
only if

cHe>0 Ve espan(V) — {0},
where span(V) is the vector space generated by V.

Proof. Consider two different solutions ¢; and ¢, to (34). Then, we get:

O*H ~ o’H ~
A= (cp—c)He;, and (¢, —c¢ A= (¢ —c)He. 36
dcoi’ > (T elHe (2—a)gg3h = (@ -ela (36)

(c1 — )

Consequently, it gives: (¢, — ¢;)H (¢ — ¢;) = 0, where (¢; — ¢,) belongs to span(V). If H is definite positive
on span(¥’), then the previous equation implies ¢; = ¢,, which contradicts the hypothesis of two distinct
solutions. B B

Otherwise, (¢; — ¢;) belongs to Ker(H), subset of span(V) where H is not definite. [

5. Application to von Karman plate theory

Application to von Karman plates (with large transverse displacement and large deformation) (Love,
1944; Timoshenko and Woinwsky-Krieger, 1959) is important because it allows coupling between del-
amination and buckling. The approach used in Sections 3 and 4 for Kirchhoff-Love plates can be extended
to von Karman plates in a straightforward way. The difference between the Kirchhoff-Love and von
Karman theories is mainly due to the non-linearity of the plane strain with respect to the transverse dis-
placement in von Karman plates:

1
e(u,w) = 3 (Vu+"Vu+Vwe Vw), x(0) = VVw. (37)

This enables to take buckling into account in von Karman theory.
Upon following the same steps as in Sections 3 and 4, one obtains the corresponding evolution for-
mulation for von Karman plates, whose most important aspects are summarized in this section.



R.-M. Pradeilles Duval | International Journal of Solids and Structures 41 (2004) 103—130 117

5.1. Study of the equilibrium state

5.1.1. Equilibrium equations

Stationarity of the Lagrangian with kinematic constraints described by (2) on I'; gives, in addition to the
kinematic relations on 0Q (12), the compatibility relations in ©, (37) and the constitutive relation (3), the
following equilibrium equations:

e in @ with i€ {0,1,2},

divN =0,

divdivM — div(V - Vw) =0,
e along I,

[N]-v=0,

[divM] -y+% [v-{[M]+ KN} 1] =0, (39)
v (IM]+#N) v =0,

¢ on the external boundary,
e N-n= },F,f on 0Qg, Vpe€{l1,2},
—divM-E—a%(ﬁ-M-g):w on 0Qp,, (40)
n-M-n=2C" on 0Qc.

5.1.2. Energy release rate
Analyzing the total dissipation of the system, we get:

G=[W]—y - (N"-[Vu] + M- [VVw] — KN -VVw) - . (41)

5.2. Evolution of delamination front

5.2.1. Rate boundary value problem '
The evolution problem for the instantaneous delamination induced by a load increment A is defined
again by (15), (16), (23), (25), (27), (28), (29), (30), (31), except for the following differences:

e in plate i, (28) is changed in
&= 3 (Vi + Vi + VW' @ VW + VW @ Vw'), & = VVW, (42)
e in plate 7, (30) is replaced by
diviN =0,
o (43)
divdivM — div(N - Vw + N - Vw) =0,

e on [, the equilibrium conditions in rate form (16) along the moving delamination front I,
become
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[Ny =2 (9N] <),

[div ] 'YJF@%{Y' (IM] + KNy -z} = —a%{r-a%(qs[[[Mﬂ + hiNi]) 'f} + [N : VY], (44)
v- ([M]+ KN -y = $lv-V([M] + KN -v] — {[M] + h'N'} : (z®z+z®z)%-

During the propagation of the delamination front, the criterion g(G) = 0 has to be maintained. So,
g’—éDd,(G) = 0 where

Dy(G) = G(N, M) + G(it, W) + $G*
with now

GIN.M)=—v-N-([Vu] —hVVw)-v—v-M-[VVW] -y,
G(i,w) = [N] : (Vitg + Vwy ® Vivg) + ([M] + KN') : V'V,

G =—[N:(VVu+Vw@VVW) + M :VVVW]-v+v- VN -v- ([u] — KVVw) v
+v-VM -y [VVW] - v+ N': ([VVu] = K'VVVw) + M’ : [VVVW]'.

5.2.2. Global formulation
As in the Kirchhoff-Love case, the local equations of the rate problem are equivalent to a variational
inequality of the form (33), with the functional F now given by:

. 2 1 & . ~ ag 1 ag ?
F L _ L Wl ' d 71!@‘“ coeN .. vs - x 2 26
(it, W, ¢, A) ,z_o:/sz‘, z[s,x] [k} ® o, W) /Fr G(E7W)C6Gds+2["th <6G) ds,

where ¢ and k are given by (42).

6. Applications

Two analytical applications are presented in this section.

The first one (Section 6.1) corresponds to the bending of a delaminated plate. This structure is an ex-
tension of the double cantilever beam considered in Roudolff and Ousset (2002), La Saponara et al. (2002),
Greco et al. (2002). Here, analytical results concerning the energy release rate are given as well as some
conclusions on the stability of the evolution.

The second example (Section 6.2) is a delaminated structure under compression. It uses the non-linear
von Karman plate theory and we study the propagation of delamination on a frame of plates after buckling
of the plates below and above the fracture. This phenomenon induces coupling between delamination and
buckling as shown in Moon et al. (2002), Nilsson et al. (2001) and Storakers and Nilsson (1993). In what
follows, we first obtain an analytical form of the energy release rate with or without buckling. Then, due to
the global functional introduced to this end in the previous section, the linear propagation of the delam-
ination front is discussed in terms of stability and bifurcation.
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6.1. Propagation of delamination in a double cantilever beam

6.1.1. Definition of the structure

The structure considered is a rectangular plate (thickness 2e) with a fracture in its median plane. The
constitutive material is assumed to be homogeneous, isotropic and elastic with characteristics denoted by E,
the Young modulus, v, the Poisson ratio.

The rectangular plate Q; is defined by:

Q= {(xl,x2)|x1 €[0,L], x, € [—g,g} }

It is delaminated throughout the whole axis e,. The delamination front is located on the line defined by
X1 =a, x, € [—%,’—;] (a < L). ay,; denotes the initial location of the delamination front.

Let Q; (respectively Qtz) denote the plate above (resp. below) the delamination and Q? the undamaged
plate.

The loading of the structure is the following (see Fig. 2):

e the edge x; = L is clamped (displacements prescribed to zero),
e onx; = :I:%, the normal and shear stresses vanish and the rotation is given equal to 0, i.e.

N-e,=0, divM e+ (e, M-¢), =0, wy=0,

e on the remaining boundary (x; = 0), if 2wy denotes the crack opening displacement for the delaminated
structure,

F'=F'=0, C'=0, w=-ws; and w'=wy.

6.1.2. Equilibrium
The displacement vector and the stress tensor are easily found to be independent on the x, coordinate.
The configuration is symmetrical with respect to the x; axis. So, we get for the solution:

(@) (o)

clamped edge
w = wy

W= Wy

Hf——w‘(l-*-‘ -------------- K-.--
plate'd clamped edge

a

W= —uy

L

Fig. 2. Double cantilever beam and loading: (a) initial and undeformed configuration, (b) deformation of the structure under loading
with propagation of the delamination front.
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u' (x1,x2) = 1 (x1,%2) =0,

3k X
1 —u? - | [ IS I
w (xl,xz) w (xuxz) Wd[ 2a +2a3 ’
uo(xl,xz) =0,
w(x1,x,) =0
and
NO _ NI _ N2 _ 0’
M° =0,
3Dwgxy . Eé’
M' = -M’ ZT(Q ®e +ve,®e) with & :m'
The potential energy at a state of equilibrium is P(wy,a) = 31,9;%21

a3

6.1.3. Energy release rate and linear propagation
The energy release rate associated to a delamination whose current length is denoted by a is:

9w
G= Pt
If a Griffith-like criterion is adopted, such as ¢(G — G¢) = 0 with ¢ > 0 and G< G¢ on T, the critical

. . 4
loading is reached for wy = we(a) = /%

Considering only uniform propagations of delamination, which means that the normal velocity of

propagation is constant along I',(¢(s) = ¢(x;) = &), the analysis of evolution consists in studying G as a
function of a. Then, the normal velocity of delamination front is given by D,(G) = 0, which is equivalent to
aaquWd +%¢ = 0. This leads to ¢ =1 3—3

Consequently, the evolution with uniform propagation is always stable, when the loading is driven by
displacement, as shown on Figs. 3, 4 and 5.

1

—— evolution of structure r

G=G¢

with linear propagation

Wy /Wrax

without propagation

0 ainiL 1
all

Fig. 3. Evolution of the delamination length with loading in DCB experiment (a;,; denotes initial length of the delamination).
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with linear propagation

«—— Wwithout propagation

0 W@y W
Wy

Fig. 4. Load/deflection curve with linearly propagating delamination (DCB experiment).

with linear propagation

<« Without propagation

0 ajni /L all 1

Fig. 5. Resistance curves: transverse force versus delamination length (case of linear propagation) (DCB experiment).

This result could have been established from the global functional A which here takes the following
form:
369 (W)’

H (b, &) = ==+ 18b7

(wa)* |a wq|a

d
3
a’ |la wqla
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6.1.4. Analysis of evolution and general propagation
Let now consider general evolutions of the delamination front when the propagation criterion is reached.
Any normal velocity is then sought in the form:

(s) = Pp(x2) = ao + ”Z“’l:an cos (2%%) + nzx;bn sin (2}17[%)

and the uniqueness of the (a,,b,) coefficients is investigated.

Analysis of the rate boundary value problem ((15), (16), (27)—(31)) implies that the propagation velocity
necessarily takes the form ¢(s) = ¢(x2) = > a, cos(2nnz).

Then, we get the following displacement rate:

'—4?=0 and &’ =0,

\:-

O

) . 3, x3 3agwq [x1  *?
| Rt oM
v i [ 2a + 243 * 2a |a @

o {a sinh (221 cosh (2
+— Z a

) —x cosh (thx] ) sinh (Ztma ):| <2n7TX2 >
Cos b .

cosh (224) sinh (274 ) — 2p7 ¢

As introduced in Section 4, stability and non-bifurcation are characterized by positive definiteness of the
functional H over the set V' of admissible delamination front normal velocities or over the vector space
span(V’), respectively.

Here, H corresponds to:

H(¢7Wd) :H(a()aa|7"'aanv"'7wd)

B 3b@v’v§ 18bDwawq
- - 4

b@wﬁa% 9b DW3 o~ b
a Za” 1+2smh(””“’)cosh(”’“’) — Zma |

n= b

+18

20 ginh? (2ama ) ]

a’ a

Consequently, the second derivative of H with respect to ¢ is positive definite for all aspect ratios a/b and
there is no bifurcation in the evolution of the delamination front.

6.1.5. Discussion

The foregoing analysis of the Double Cantilever Beam gives results similar to experimental observations
in La Saponara et al. (2002) and Roudolff and Ousset (2002). One should note that this modeling cannot
deal with either the start of delamination (¢ < L) or the case a = L, i.e. when the delamination front reaches
the clamped edge, because edge effects are not taken into account.

6.2. Delaminated plate under compression

6.2.1. Definition of the structure
A rectangular plate

. b b
Q, = {(xl,xg) with X € [— L,L]7 Xy € |:—§,§:| },
assumed to be homogeneous, isotropic and elastic (E,v), is considered in this example.
It is delaminated throughout the whole axis e,. The delamination is in the middle of the plate. Its front
is initially located on the lines defined by
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b b
Xy =a, xE€ )
and

b b
X1 = a, xze[—z,z} (lai| < L and a; > a,).

Let 2/ denote to the length of the delaminated part (i.e. a; — a, = 2I) (see Fig. 6).
The loading of the structure is as follows (see Fig. 6):

e on the transverse boundary (i.e.. x,. = j:g), N-e,=0,divM - e, + (e, 'MQZ),I =0, wy=0,
e along the edges x; = £L the boundary conditions are:
e =-—uq, F{=F'=0, C'=0 onx =1L,
$ € = Ug, fﬂd:f%dzo, C'=0 onx =-L

e there is no surface force.

(BN

b b
f 272 4
OI'X2€|: 2,2:|, (5)

In order to take buckling into account, the von Karman plate theory is used and the evolution problem
is therefore formulated based on the results of Section 5.
Let ¥ and 2 denote the classical ratios (lf—evz) and #e_jvz), where e is the thickness of the plates above
and below the delamination.

6.2.2. Equilibrium
Using the local equations given in paragraph 5.1.1, two possibilities arise:

Li’9  _ _ Lé*x?
2E(1—v2) — 1212(1-2)

o If Ug < ug with ug —

Uu
u(xi,x) = fd (x1e; —vx2ey), w=0,

then the displacement and the stresses are:

N:EeuL—dg1 ®e, M=0.

The potential energy at equilibrium is in this case independent of /:

Plug, 1) = 26Lb(1 — vz)(%)z.

(a) plate 0 (b)

Fig. 6. Delaminated plate under axial compression: (a) initial and undeformed configuration, (b) post-buckling of the loaded structure
with propagation of the delamination front.
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Consequently, and this is well known (Storakers and Anderson, 1988; Storakers and Nilsson, 1993),
no propagation of the delamination can occur without buckling of the structure.

e Assoon as uy4 > ug, buckling of the plates above and below delamination occurs. Then, the equilibrium
solution becomes:

r u u .
u’ = |ug ——B(x1 —|—L)}g1 + V—Bx2§2 if x; <ay,
L L L
u u .
20: —ud—TB(X1—L):|§1+Vfo2§2 lfxl 2(11,

ug ) f < <
€1+VTX2€2—H i a; <x<a,

S P SR 0 W (7R B OO )
u = Tl L{XI lxl}+ 5. Sin an

w' =0 if x; & [ar,a1],

. , 21 Jug—up
W o=—w=—

7 ] {cos(%fc&—kl} if ap<x1<a;

with J~C1 =X —
The generalized stresses are given by:

ajta
-

N° =2N' = 2N? = 2EeuL—Bg1 ®e =2¢(1 — vz)“L—Bg1 Re,,
M’ =0,

M = _MP = 2" MU
] ]

T
cos (7x1)[€1 ®e +ve, ®e.

The potential energy at equilibrium is equal to:

B 5 [ UB\2 4n?
Plug, 1) = 26Lb(1 — v )(f) + Ib (g — ).
It should be emphasized that only local buckling is considered. Global buckling could occur but is not
taken into account here. Influence of this phenomenon on delamination is studied in Qiu et al. (2001),
Nilsson et al. (2001) and Hutchinson et al. (2000).

6.2.3. Energy release rate and linear propagation
When the loading parameter (u4) is larger than its buckling value ug, the energy release rate is:

4n*(ug — up)
3

Consequently, the onset of propagation (governed by the Griffith criterion) corresponds to
Ug = Uc :uB—f—Gcﬁ

If only uniform propagation is considered (which corresponds to a;(s) = @;), then it is sufficient to study
the first-order derivative of G with respect to a;.

In this case, the evolution of delamination is stable if [ > /g, With Iy, = ,5/%, and unstable
otherwise (see Fig. 7). These results are confirmed by a global analysis using the functional H, here given

by:

G(al) = G(dz) =9
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Y

Ll

Ue (|
b Yo (ggan)

—— (évol ution during loading

Fig. 7. Loading uy4 versus delamination length / for the delaminated structure under compression.

L 9be
H(ig, a1,a,) = 5

Iini

| L
stab

—_— [—ild(dl - (:lz) + (3ud — SMB)(dl - dz)z].

125

The fact that H depends on a; — a, clearly indicates that the evolution is not unique because the energy

release rate depends only on the total length of delamination whose velocity is [ = a; — a,.

Considering the case of the symmetric uniform propagation where a; = —a, and @ = —a,, the propa-
gation associated to the evolution of the loading parameter gives the structure deformation shown in Fig. 8,
where [, represents the initial length of the delamination with /,; < lgp. This result is similar to that
of Petitniot and Fabis (1989), for a pre-delaminated plate with an initial penny-shape crack, under

0.15

Global position during loading with linear propagation

Transverse displacement

Fig. 8. Evolution of the delaminated structure under compression.
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T

stable propagation

&)
1
Rt
]

/ unstable propagation

buckling
without propagation
Ue (i)
0 1
Ug(lin) x u-(L)

Fig. 9. Out-of-plane displacement in the center of the delamination versus load (displacement u4) for the delaminated structure under
compression.

compression: after buckling from wug = ug(lin;) to ug = uc(linj), an unstable propagation occurs at

ug = uc(lin), then a stable propagation takes place until the whole structure is delaminated (/ = L).
Moreover, the variation of out-of plane displacement with respect to the load, as depicted in Fig. 9, is

qualitatively identical to that obtained by Nilsson et al. (2001) from numerical or experimental results.

7. Conclusions

The global formulation introduced in this paper enables to study stability and non-bifurcation of the
evolution of a delaminated structure under quasi-static loading.

Thanks to the expression on the current configuration, the update configuration is not needed. More-
over, the symmetric form of the global functional F facilitates the implementation of this approach in
numerical schemes such as the FEM. The analysis of the existence and the uniqueness of the solution to the
rate boundary value problem would be associated to the study of eigenvalues (positiveness) of the second
derivative of the functional H restricted to admissible fields or to the vector set generated by them. Some
elements about the FEM implementation are given in Appendix A.

The analytical examples discussed in this article give good qualitative results compared to experiments
even if only very simple models were considered with or without buckling.

Introduction of other kinematic relations can be considered (Anquez et al., 1990). It would introduce
different equilibrium relations, and lead to another form of the energy release rate. Consequently, the global
functional would have to be modified accordingly as well.

As previously shown with three-dimensional structures with irreversible mechanical transformation
governed by energetic criterion, this framework can be generalized to elastic interface (Borg et al., 2002)
as was also considered in Pradeilles-Duval (1992).

If a three-dimensional body including planar cracks is considered as in Nguyen et al. (1990) or Bonnet
(1999), an extension of this framework can be given if the domains above and below the crack or the un-
damaged domain can be considered as plates at least in the neighborhood of the crack front. Then, even if a
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more general than Kirchhoff-Love or von Karmann plates behavior has to be considered and if the
propagation in the plane of the crack is assumed, then the approach used in Sections 3 and 4 can be ex-
tended.

Moreover, the present formulation can easily be generalized to plates with inelastic constitutive be-
havior, together with a free surface energy. In this case, one obtains an additional relation on I'; arising due
to the possibility of simultaneous evolution of internal variables and propagation of the delamination front
as has been discussed in Pradeilles-Duval and Stolz (1995). Consequently, either the front would propagate,
or the internal variables rates would change in each plate on both sides.
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Appendix A. Numerical implementation

In this section, a numerical solution procedure is presented. It includes remarks on the delamination
front representation and the interpolation of the normal velocity on the front. Discretized equations are
given for the rate boundary value problem. After comments on the stability and non-bifurcation criteria,
the computation of the actual extension velocity is considered.

A.1. Representation of the delamination front and its normal velocity

Implementations have already been proposed in Nguyen et al. (1990) (based on 2-D FEM with plane
strain or plane stress), in Bonnet (1999) (based on 3-D symmetric Galerkin BEM) for the study of the
instantaneous propagation of cracks in elastic domains. In those papers as well as in this work, the crack
front is planar.

In the present formulation, it is natural to discretize the undamaged zone and the delaminated domain
using triangular or quadrilateral shell elements and »¢ shape functions.

As underlined in Bonnet (1999) or Ghoussoub and Leroy (2001), one should notice that the elements
adjacent to the delamination front need C' continuity along the interface between undamaged and dam-
aged domains; so that the interpolated unit tangent t and the normal v are continuous along I',. Conse-
quently, specific elements such as those proposed in Ghoussoub and Leroy (2001) are required.

Let the nodes on I', be numbered such that x!,x?,... x" are the n, interpolation nodes along I'}** C T,.
Normal velocity is supposed to be continuous versus the curvilinear coordinate along I',. So, an admissible
interpolation of ¢ may be denoted:

i=ny

b(s) =D Ni(&r)9"”,
i=1
where

e s =s(&r) on the side of element 4, neighboring the front I'*"',

e the functions N;(¢)) are constructed so that a C! interpolation of the delamination front can be defined
when using this form of normal velocity. This requirement is necessary in order to evaluate the actual
evolution of the front due to the increment of the loading parameter with the same set of functions
and thus obtain a regularized front.
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Admissible propagation velocity vectors are obtained by enforcing ¢(s) = 0 on I''"", which translates

into inequality constraints on the normal velocity degrees of freedom {¢} = {(ﬁ(")}iE (s}

A.2. Discretized equations for the rate boundary value problem
The global functional F introduced in Theorem 1 is written as:
FUPY8).) = 3 DKV = ST HE) = 18K} — 5 ()G (),
where

e {V'} is the discretized displacement velocity vector (n° x 1),
e {¢} is the discretized normal velocity on the delamination front (n, x 1),
e [K] is the n° x n° symmetric tangent stiffness matrix of the structure defined as

SR = Z/ S| ldo
2 - =0 79 2™ K 7
e [C] is the coupling (n, x n°)-matrix given by
T ~.. .. 0
(@HOYY) = [ Glaine s

with Cg_é = Zij’ Ni(fr)d)(i);
e [G"] is the n; x n; symmetric matrix

50Nl =5 [ 6 A

e {F} corresponds to the discretization of the loading (generalized forces). It is assumed that this (n° x 1)-
vector is constant (if the mesh is unchanged) due to hypothesis of proportional loading (Section 2.6).

Consequently, the rate boundary value problem is written
[KI{r} = TICH{$} = H{F}.
The consistency relation implies that:
[CH{V} +[G"]{¢} = 0.

Given a normal velocity vector {¢} and a loading parameter rate A, the velocity is obtained through:

{r} =K' {"[Cl{¢} + A{F}}.

In this work, the rate boundary value problem on {¥} is similar to the original equilibrium system which
governs the displacement associated to a given loading parameter with I', fixed. Then, the rate problem is
rewritten as:

find {¢} admissible with propagation criterion such that

[H{$} + i{H.;} =0,

where [H| is a n; x n, symmetric matrix and {H._;} a n; x 1 vector defined by

[H] = {[C]K] ""[C] +[G)} and {H.;}=I[C][K] '{F}.
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A.3. Comments

The existence and the uniqueness of the actual normal velocity defined by {¢} is determined by the
properties of the matrix [H].

o If [I? ] is positive definite, then the uniqueness criterion is satisfied and the actual velocity is obtained, if
it exists, by:

{0} = AH] {H..}.

e If [H] is not positive definite, the uniqueness criterion is violated.

To test the existence of a solution to the quasi-static instantaneous evolution, one has to investigate the
properties of the quadratic function T{¢"}[H]{¢"} on admissible normal velocities.

o If it is definite positive, there exists a solution given by the previous equation.

e If it is not definite positive, then the existence or stability criterion is not fulfilled.

o If there exists a non-zero admissible velocity {¢*} such that [H]{¢"} = 0, the present loading parameter
is a dead load.
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